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Abstract-Earlier workers have presented closed form partly analytical solutions to the problem of the 
contra-flow thermal regenerator. These methods of regenerator calculation have not proved to be as robust 
as perhaps was anticipated when the methods were first devised. In this paper are described proposals 
whereby some of these difficulties can be alleviated. The proposals are relevant to the possible development of 

the closed methods for realistic non-linear models of regenerators. 

NOMENCLATURE 

coefficient ofjth term in (21); 
heating surface areas [m’] ; 
matrix specific heat [J/kg K] ; 
matrix temperature distribution at the start 
of a period [K] ; 
heat transfer coefficient [W/m’ K] ; 
Bessel function of the first kind and first 
order ; 
function defined by (19); 
length of regenerator [m] ; 
mass of gas resident in regenerator [kg] ; 
mass of solid matrix [kg] ; 
order of the power series in (21) ; 
denotes matrix in (22); 
period [s] ; 
gas specific heat [J/kg K] ; 
gas temperature [K] ; 
solid matrix temperature [K] ; 
mass flow rate of gas [kg/s] ; 
distance down regenerator from current 
entrance [m]. 

Greek symbols 

r, dimensionsless distance from current en- 
trance, defined in (5); 

% dimensionless time in current period, de- 
fined in (6); 

4 reduced length defined in (7); 
I-4 reduced period defined in (8); 
0, time [s] ; 

VREGI thermal ratio defined in (23). 

Superscripts 

, refers to hot period; 
I, 
9 refers to cold period. 

INTRODUCTION 

IN 1961, Nahavandi and Weinstein [l] presented a 
method of solution of the differential equations 

$ t(5,9) = T(& rl) - t(5, V)? (1) 

; 7X, rl) = t(5, rl) - T(& V) (2) 

describing the temperature behaviour of the regen- 
erative heat exchanger. This procedure was identical to 
that given by Nusselt [2] in 1927. Whereas Nusselt 
presented his solution which he acknowledged to be 
due to Riemann, Nahavandi and Weinstein produced 
the same integral equation solution to the partial 
differential equatiqns (1) and (2) using the method of 
Laplace transforms. 

By solving the integral equations by a numerical 
method, Nahavandi and Weinstein calculated the 
solid temperature distributions at the end of each 
period of operation at cyclic equilibrium. These tem- 
perature distributions were represented as power 
series in the dimensionless distance variable 5. The 
coefficients of the power series were calculated by 
solving a set of simultaneous linear algebraic 
equations. 

The successful application of the Nahavandi and 
Weinstein method relies upon the absence of ill- 
conditioning of the resulting linear algebraic equa- 
tions. Should any ill-conditioning arise, the method 
will break down. The objectives of this paper are two- 
fold. Firstly, the method proposed by Nahavandi and 
Weinstein for the solution of the integral equations is 
discussed and the circumstances under which the 
method breaks down are explained. Secondly a poss- 
ible means of alleviating these difficulties is 
discussed. 
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It is important to note that both the Nahavandi and 
Weinstein and the Iliffe [3] methods are closed in the 
sense that the cyclic equilibrium condition of the 

regenerator, that is when the regenerator performance 
has become periodic, is computed directly. In the open 

methods, the regenerator model is, possibly, run 
through many cycles from an arbitrary starting con- 
dition until cyclic equilibrium is achieved. It might 
seem therefore that closed methods are ideal when the 

regenerator under consideration is particularly slug- 
gish, and many cycles must be computed in an open 

method before equilibrium is achieved. This will be 
particularly the case where non-linear models of 

regenerator are being developed in which are em- 
bodied, for example, temperature dependent thermal 

properties of both gas and packing (chequerwork), 
time varying gas flow rates and strongly temperature 
dependent radiative heat transfer effects. The con- 
siderations here for the idealised regenerator are 

equally applicable to possible developments of closed 
methods for such non-linear models. 

In this paper, therefore, the possibly unexpected way 
in which closed methods break down is described in 
the hope that computer programs developed for 

realistic non-linear models will at least be designed to be 
able to anticipate these difficulties for program users 
not familiar with the mathematical methods involved. 

THE IDEALISED RE<;ER;ERATOR 

The regenerator model incorporating the differen- 
tial equations (1) and (2) embodies certain idealis- 
ations. In this linear model the hot gas enters with 
constant temperature at one end of the heat storing 
matrix, loses some of its heat as it passes through the 
matrix before it departs with a time varying tempera- 
ture at the cold end. The hot gas is then shut off and it is 
assumed that all the residual hot gas is driven from the 
channels of the matrix. In his paper of 1929 Hausen [4] 
supposed the idealised regenerator to be equipped 

with special pistons to effect the evacuation of this 

residual gas. At this stage the cold gas enters the 

regenerator at the cold end with constant temperature. 
The heat stored in the matrix is regenerated by the cold 
gas which leaves at the hot end with a variable higher 
temperature. Again, the residual gas is ejected from the 
matrix channels before another cycle of operations 
begins. 

The cycle of operations is said to consist of a ‘hot 
period’ followed by a ‘cold period’, and after a 
sufficiently large number of such cycles, the thermal 
behaviour of the regenerator becomes periodic and 
‘cyclic equilibrium’ is said to have been established. It 
is important to note that such an equilibrium is 
characteristic of a forced oscillation. Although from a 
practical view point, the regenerator is considered to 
promote the exchange of heat between the gases, this 
aspect is exploited in the mathematical analysis that 
the alternate passage of the hot and cold gas through 
the regenerator channels imposes periodiclvariations 
of temperature in the heat storing material. 

In the Nahavandi and Weinstein paper, a solution 

to the differential equations is obtained directly for this 
cyclic equilibrium condition. 

The physical idealisation involves a number of 
further simplifying assumptions : 
(4 

(b) 

(cl 

the thermal conductivity of the gases and the 

matrix is zero in a direction parallel to that of the 
gas stream. The temperature variations within the 

matrix in the radial direction are not considered. It 
is assumed that the thermal conductivity of the 
matrix in the radial direction is either infinite, iti 
which case the solid will be isothermal in this 
radial direction, or to be finite. In the latter case. a 

bulk heat-transfer coefficient is developed which 

incorporates the surface resistance to heat transfer 
and the resistance internal to the heat storing solid. 
The use of this bulk heat-transfer coefficient is 
discussed in detail by Willmott [5]. Its use does not 

affect the essential form of the differential equn- 
tions (1) and (2); 
the heat-transfer coefficients and the thermal pro- 

perties of the gas and solid are regarded as 
temperature independent: 
the mass flow rate of the gas does not vary with 
time in each period, although the flow rate in the 
hot period may be different from that in the cold 
period. 

MA1HEMATICAL REPRESENTATION OF THE IDEAI. 
REGENERATOR 

The descriptive differential equations 

have been derived in the Nahavandi and Weinstein 

paper which also introduces the dimensionless para- 
meters < and $. The parameters take the form 

By introducing these parameters, equations (3) and (4) 
assume the form of equations (1) and (2) introduced 
earlier in this paper. In these equations one or two 
primes are inserted against the various symbols when 
the hot or the cold period is considered respectively. 

Corresponding to each period of the cycle are the 

dimensionless parameters ‘reduced length’, A, and 
‘reduced period’, IT, originally proposed by Hausen 

[41* 

i\= !A 
WS 

n=$+,w,. 
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(Nahavandi and Weinstein use &, for A’, <z for A’, no 
for IT and PJ$ for IY.) 

The differential equations (1) and (2) are solved 
subject to two boundary conditions, namely: 

(4 The inlet gas temperature during each period does 
not vary with time. Inspection of the linearity of 
equations (1) and (2) reveals that the temperature 
scale is immaterial and in the analysis, the hot inlet 
temperature is considered to be 1 while the cold 
inlet temperature is set equal to 0. 

(b) The ‘reversal condition’ incorporates the facts that 
distance is always measured from the gas entrance 
in both periods, and that the temperature at any 
position in the heating storing matrix at the end of 
one period is equal to that at the same position at 
the commencement of the next period. The same 
position measured to be 5’ from the gas entrance in 
hot period is measured to be r“ from the gas 
entrance in cold period and, in in~or~rating the 
contra-fiow mode of operation, r is related to 5” 
by <‘/A’ = I - jll/L?ln. 

The reversal boundary conditions take the form : 

T’(ly, I-I’) = T”(A” { 1 - r’/A’},o) (9) 

T”(<“, II”) = T’(A’(1 - <“/A”), 0). (10) 

SYMMETRIC REGENERATORS 

The thermal regenerator problem is simplifi~ by 
consideration of the symmetric case where 
A = A’ = A” and II = II’ = II”. Here the temperature 
performance of the solid in the hot period is exactly 
symmetric to that in the cold period at cyclic equilib- 
rium. In these particular circumstances, the reversal 
condition can be written 

T’([‘,O) = 1 - r“(r”,O) (11) 

using the (0,l) temperature scale. This means that the 
problem is reduced to the ‘single period’ boundary 
value problem. The reversal condition can then be 
written 

T’(<‘, 0) + T’(A - r’, II) = 1. (12) 

The difficulties which are associated with both the 
method of ~~avandi and Weinstein and that of Ihffe 
manifest themselves in both the symmetric and more 
general cases. Discussion of these problems is con- 
siderably simplified, without significant loss of gen- 
erality, by investigation of this symmetric case. 

THE INTEGRAL EQUATIONS 

It is useful to introduce a simplifying notation at this 
stage: it is specified that the solid matrix temperature 
distribution at the start of the hot period is F’({‘) and 
at the start of the cold period is F”({“). Thus 

F’(<‘) = T’((‘, 0) (13) 

F”(5”) = T”((“, 0). (14) 

Nusselt and subsequently Nahavandi and Weinstein 
represented the solution of the differential equations 
(1) and (2) in the form: 

x $‘e -(t,“+<“-“‘F”(E)& 

for the cold period and 

T’(C’,n’) = 1 - e-“‘[ 1 - F’(<‘)] 

(15) 

x ~‘e-_(f+S’--E)(l - F’(g))& 

for the hot period. 
Upon application of the reversal conditions (9) and 

(10) and setting $’ = II” in equation (15) and n’ = II’ 
in equation (16), the solid temperature distributions F’ 
(r’) and F”(I$“) at the start of the hot period and the 
start of the cold period respectively are related by the 
integral equations 

F’[A’(l - <“/A”)] = e-““F”(i”) 

s 

5 II 

+ K”([” - e)F”(a)da (17) 
0 

and 

1 - F”(A”(l - <‘/A’)) = eCn’[l - F’({‘)] 

s 

e;’ 
+ K’(c’ - e)[f - Fr(e)]dE (18) 

0 

where 

For the symmetric case, appIication of the reversal 
condition (12) for the cold period yields the integral 
equation 

F”(A - 5) + e-“F”(t) 

+ K(< - a)F”(a)dI: = 1. (20) 

SOLUTION OF THE INTEGRAL EQUATION FOR 

THE SYMMETRIC CASE 

In the Nahavandi and Weinstein approach, the 
temperature distribution F(l) [omitting now the 
double primes in equation (20)] is represented by an 
approximating polynomial 

F(4) = i a#. 
j=O 

Equation (20) now takes the foIlowing form : 
n n 

C aj(A - {)j -I- e-” C ajgj 
j=O j=O 

+ i Uj 

j=O 

(21) 
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By applying this equation (21) at n + 1 distinct values 
&(i = 0,1,2,. ) n)ofcontherangeO < 5 < A,asetof 
n + 1 simultaneous linear equations is obtained in the 
n + 1 unknown coefficients a,, a,, a2, .,a,. These 
equations are written in the form 

Ra = 1 (22) 

where a is the column vector {u,, a,, u2,. , a,} and 1 is 

the column vector {l, 1, 1, ., 1). R is a (n + 1) x 
(n + 1) matrix, the (i, j)th element of which is 

s 

<i 

(A - &)j + e-“<: + &(ti - s)de 
0 

for 0 d i, j d n. 
Computer program libraries commonly provide 

subroutines for the evaluation of the first order Bessel 
function J, with imaginary arguments. However, it is 
worth noting that it can be demonstrated that 

lim K(x) = He-” 
x-0 

and that this limiting value can be used for x <: 10e4 
with negligible relative error for II < 5. Many practi- 
cal values of II are in the range 0.1 < II < 3. 

In order to evaluate the elements of the matrix R, the 
integration 

s <i 
c’K(<, - E)dE 

0 

can be achieved using Gaussian quadrature. 

CALCULATION 0~ REGENERATOR EFFECTIVENESS 

The effectiveness of regenerator thermal behaviour 
is measured in terms of the thermal ratio qaEG which is 
defined as the ratio of the actual heat transfer rate in a 
contra-flow exchanger of infinite heat transfer area. 
This is represented by the equation 

Aftt- 4 f-A” 
F”(<“)d<” 

0 

which for the symmetric regenerator takes the form 

1 A 
UREG = jj 

s 
V”‘(5) - F’(OW (24) 

0 

Applying the reversal condition (12), the expression 
(24) for the thermal ratio takes the form 

1 A 
VREC = jj 

s 

(F”(t) + F”(A - 5) - l)dc. (25) 
0 

Upon substituting the polynomial expansion, the 
integral 

VREG = k si ,* ,io [aj(t’ + (A - tY’)l - l]dt (26) 

can be evaluated explicitly using 

VREG = $ (i. s - A). (27) 

0 --_ __ * :, 

FIG. 1. Chebyshev distribution of data pointa. 

Thus upon the solution of the simultaneous linear 
equations (22) for the coefficients {a,, ui, a,, ., unj, the 
thermal ratio for a symmetric regenerator of reduced 
length A and reduced period II can be calculated using 
equation (27). 

DIFFICULTIES IN SOLVING THE LINEAR ALGEBRAIC’ 

EQUATIONS 

The successful application of the methods of 
regenerator calculation described here depends upon 
the absence of ill-conditioning of the equations (22). 
Although the Nahavandi and Weinstein method does 
not suffer from ill-conditioning as such, another 
problem does arise. For increasing values of reduced 
length, for a fixed value of reduced period II, the 
determinant ) RI from equations (22) increases in 
value. What happens is that certain elements of the 
matrix R become very large relative to the remainder, 
and as a consequence the linear equations become 
difficult to solve. 

It will be recalled that the (i, j)th element of the 
matrix R is 

(A - &)j + e-“ti’ + dK(& - Qdt: 

for 0 < i, j < n. Representation of the temperature 
distribution F”(t) by a polynomial of degree 8 for 
example in a regenerator of reduced length A = 10 
involved elements of the matrix of order at least 10’ in 
size. The smaller the value of &, the larger will be the 
corresponding matrix element. Of course, the larger 
the degree of the polynomial required for accurate 
solution, the more severe will be this problem. As the 
linear equations (22) are solved in the Nahavandi and 
Weinstein method, division of an element by another 
very large matrix element generates a very small 
element; this gives the false impression that the 
equations are ill-conditioned, and a computer simu- 
lation of the regenerator may be halted in this 
unexpected manner. 

ITERATIVE CALCULATION OF REGENERATOR 
EFFECTIVENESS 

Using the Nahavandi and Weinstein method of 

calculation, the thermal ratio of a regenerator of 

specified reduced length A and reduced period fl is 

first computed assuming F”(r) to be a linear function 
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of l. The computation is repeated using successively 
higher powers in the polynomial expansion of c, 
representing F”(l). This iterative process is said to 
have ‘converged’ when the difference between two 
consecutive evaluations of qREG is less than some 
prescribed level, E, In the results presented in Tables 
l(a), l(b), and l(c), the value of E was set at 10m5. 

CHOICE OF DATA POINTS & 

Nahavandi and Weinstein chose to solve the set of 
simultaneous linear equations (22) for values 5i = iA/n, 
for i = 0, 1,2,. . ., n which are equally spaced apart. 

In the middle of a regenerator, the temperature of 
the solid varies linearly with 5 and n in both periods. 
Non-linear temperature behaviour is propagated from 
the entrances to the regenerator by the constant inlet 
gas temperatures in both periods. This would suggest 
that the data points ti should be more closely clustered 
in some way around the entrances than in the middle of 
the regenerator. From a mathematical point of view, it 
is known that if it is required to interpolate a 
polynomial Q(x) of degree n by another polynomial 
P(x) of degree n - 1, the maximum value of error 1 Q(x) 
- P(x)1 is minimised if the interpolation points are 
chosen to be the Chebyshev points. 

For the solution of the equations (22), such Cheb- 
yshev points ti were used where 

&=i{l -cos:}, i=O,1,2 ,... 

and the results are displayed in Tables l(a), and 
l(c). These Chebyshev points are clustered around the 
regenerator entrances in a manner illustrated for n = 8 
in Fig. 1. Note, however, that for n = 1 and n = 2 the 
Chebyshev points and the equally spaced points 
coincide. It will be observed that a reduction by one or 
at most two in the degree of the power expansion 
required for convergence in the calculation of the 
thermal ratio is achieved by selecting the Chebyshev 
points. In one sense, this is only a marginal gain. 
Nevertheless the method of evaluation is not com- 
plicated by this facility and advantage should be taken 
of this modification. In another sense this gain is 
important. Most elements of the matrix R require 
lengthy calculations including the numerical eva- 
luation of the definite integrals 

s <i 
5’K(ti - <Id& 

0 
and, indeed, this time always exceeds the time taken to 
solve the simultaneous linear equations. While this 
may not be an important consideration where the 
regenerator calculations are undertaken on a large, 
fast computing facility, it will be important if the 
calculation is performed on a small desk top computer, 
as is becoming the fashion in some laboratories. 
However, the most important gain is that the like- 
lihood of the method breaking down is minimised if, by 
the use of the Chebyshev data points, the degree of the 
polynomial required is held as low as possible. 

CONCLUDING REMARKS 

Willmott and Kulakowski [6] mentioned the prob- 
lem of the possible instability of closed methods for 
regenerator simulations. They suggested a numerical 
acceleration scheme which might be applied to open 
methods of thermal regenerator calculations, and 
thereby completely bypassed any problems that might 
be associated with closed methods. Previously, Wil- 
mott and Thomas [7] had concluded that the Iliffe [3] 
closed method should not be applied to ‘long’ re- 
generators, where A/II > 3 and A > 10. 

However, the possibility of using Gaussian quadra- 
ture methods to achieve high accuracy in closed 
methods of the Iliffe type were discussed by Hausen 
[8]. Reference should be made to the original paper as 
to the scheme proposed there. Whether this Hausen 
scheme could help to overcome the instability prob- 
lems discussed by Willmott and Thomas remains to 
be determined. 

In this paper we have shown that regenerator 
calculation methods of the Nahavandi and Weinstein 
closed type can be readily refined in such a way that the 
calculation time is reduced and the range of the 
applicability of such methods is extended. That the 
refined method described here generates the correct 
solution to the differential equations (1) and (2) can be 
readily checked by comparing the solutions presented 
in Tables l(a), l(b) and l(c) with those obtained by 
different methods and presented elsewhere by Hausen 
[4, 91, Iliffe [3] and Willmott [5]. The essence of the 
refinement lies in the choice of the Chebyshev data 
points, rather than equally spaced data points. There is 
little doubt that the use of such Chebyshev points 
should be considered in any development of closed 
methods for the regenerator non-linear models men- 
tioned earlier in the paper. For a method in which the 
solid temperature distribution at the start of a period 

(hot/cold) at cyclic equilibrium is approximated by a 
power series, as in the Nahavandi and Weinstein 
method, no additional computation effort is involved 
in the calculation ofthe regenerator effectiveness. Thus 
any future developments of closed methods for ther- 
mal regenerator simulations which embody, for ex- 
ample, temperature dependent physical properties of 
the heat storing mass or the fluids, or time varying flow 
rates, should endeavour to exploit the advantages of 
using the Chebyshev data points, and if possible to 
develop the Nahavandi and Weinstein approach for 
such non-linear problems. 
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Table l(a). Thermally symmetrical regenerators with n = 1. Values of 4 RE(; against q, degree of power expansion 
for (a) equally spaced points (b) Chebyshev points 

A 

1 (a) 
(b) 

2 (a) 

(b) 
3 (a) 

(b) 

4 (a) 

jb) 

5 (a) 

(b) 

6 (a) 

(b) 

7 (a) 

(b) 

X (a) 

(b) 

9 (a) 

(b) 

10 (a) 

(b) 

?I=1 

0.3210 

0.4871 

0.5867 

0.6529 

0.7004 

0.7364 

0.7647 

0.7875 

0.8064 

0.8222 

n= 2 

0.3221 

0.322 1 

0.4909 

0.592 1 

0.6600 

0.7075 

0.7428 

0.7701 

0.7919 

0.8098 

0.8249 

_ 
I, = 3 

0.322 1 

0.49 11 0.4912 

0.4912 0.4912 

0.5936 0.5937 

0.5938 0.5937 

0.6619 0.6621 

0.6622 0.6622 

0.7104 0.7108 

0.71 10 0.7110 

0.7465 0.7472 

0.7475 0.7475 

0.7744 0.7753 

0.7757 0.7759 

0.7966 0.7977 

0.798 1 0.7986 

0.8146 0.8 15X 

0.8164 0.X171 

0.8295 0.8309 

0.8315 0.8325 

0.49 I2 

0.5937 

0.5937 

0.6622 0.6622 

0.7109 0.7109 

0.7109 0.7109 

0.7474 0.7474 

0.7474 0.7474 

0.7757 0.7757 

0.7758 0.7757 0.7757 

0.7982 0.7983 0.7983 0.7984 

0.7984 0.7984 

0.8166 0.8167 0.8168 0.X16X 

0.X169 0.8168 0.816X 

0.8319 0.8321 0.8322 

0.X322 0.8322 

Table l(b). Thermally symmetrical regenerators with n = 2. Values of 1 RFG against II, degree of power expansion for (a) 
equally spaced points; (b) Chebyshev points 

A n=l n=2 

0.2904 0.2930 

n=3 ,I =4 ,1= 5 n=6 ,I -z 7 n=X 

1 (a) 
(b) 

2 (a) 
(b) 

3 (a) 

(b) 

4 (a) 

(b) 

5 (a) 

(b) 

6 (a) 

(b) 

7 (a) 

(b) 

8 (a) 

(b) 

9 (a) 

(b) 

10 (a) 

(b) 

0.4557 0.4660 

0.5556 0.5740 

0.6213 0.6450 

0.6682 0.6941 

0.7039 0.7294 

0.7324 0.7559 

0.7560 0.7766 

0.7760 0.7933 

0.7931 0.8073 

0.2930 

0.2930 

0.4664 

0.4665 

0.5755 

0.5758 

0.6486 

0.6492 

0.7003 

0.7015 

0.7384 

0.7403 

0.7675 

0.7702 

0.7902 

0.7938 

0.8084 

0.8128 

0.8233 

0.8284 

0.4665 

0.4665 

0.5757 

0.5757 

0.6490 

0.649 1 

0.7010 

0.7012 

0.7396 

0.7401 

0.7693 

0.7701 

0.7926 

0.7940 

0.8114 

0.X135 

0.8268 

0.8297 

0.4665 

0.5757 

0.5757 

0.649 1 

0.6491 

0.7012 

0.7012 

0.7399 

0.7400 

0.7698 

0.7699 

0.7935 

0.7936 

0.8127 

0.8129 

0.8285 

0.8290 

0.6491 

0.7012 

0.7400 0.7400 

0.7400 

0.7698 0.7699 0.7699 

0.7699 

0.7936 0.7936 

0.7936 

0.8129 0.X129 

0.8129 

0.8288 0.8289 0.8289 

0.8289 0.8289 
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Table l(c). Thermally symmetrical regenerators with II = 3. Values of lREC a g ainst q, degree of power expansion for (a) equally 
spaced points ; (b) Chebyshev points. 

A n=l n=2 n=3 n=4 n=5 n=6 

1 (4 
@I 

2 (4 
@I 

3 (a) 

(b) 
4 (a) 

(b) 
5 (a) 

(b) 

6 (a) 
(b) 

7 (a) 
(b) 

8 (a) 
(b) 

9 (a) 
(b) 

IO (a) 
(b) 

0.2530 0.2560 

0.4162 0.4303 

0.5184 0.5466 

0.5849 0.6250 

0.6312 0.6790 

0.6660 0.7169 

0.6938 0.7443 

0.7171 

0.7373 

0.7551 

0.7646 

0.7800 

0.7924 

0.2560 
0.2560 

0.4305 
0.4305 
0.5477 
0.5477 

0.6280 

0.6283 
0.6850 

0.6859 
0.7269 

0.7285 
0.7586 
0.7613 
0.7832 
0.7870 
0.8027 
0.8077 

0.8183 
0.8246 

0.4305 

0.4305 
0.5477 
0.5477 
0.6282 

0.6282 

0.6856 
0.6856 
0.7280 

0.7280 
0.7603 
0.7606 
0.7857 
0.7863 
0.8060 

0.8072 
0.8225 
0.8244 

0.6282 

0.6282 

0.6856 
0.6856 
0.7280 

0.7280 
0.7605 0.7605 

0.7605 0.7605 

0.7861 0.7861 

0.7861 0.7861 

0.8068 0.8068 

0.8067 0.8067 

0.8238 0.8238 
0.8238 0.8238 

an earlier form was,written 5 yr ago and sent to Hausen for his 
comments. Subsequently Hausen outlined the contents in his 
book [9], but was only able to refer to the paper as a private 5. 
communication from the authors. 

6. 

REFERENCES 

A. H. Nahavandi and A. S. Weinstein, A solution to the 7. 
periodic flow regenerative heat exchanger problem, Appl. 
Scient. Res. 10, 335-348 (1961). 
W. Nusselt, Die Theorie des Winderhitzers, Z. Ver. Dt. 8. 
Ing. 71, 85-91 (1927). 
C. E. Iliffe, Thermal analysis of the contra-flow re- 
generative heat exchanger, Proc. Instn. Mech. Engrs. 159, 9. 
363-371 (1948). 
H. Hausen, &zr die Theorie des Wtirmeaustausches in 

Regeneratoren, Z. Angew. Math. Mech. 9, 173-200 
(1929). 
A. J. Willmott, The regenerative heat exchanger com- 
puter representation, ht. J. Heat Mass Transfer 12, 
997-1014 (1969). 
A. J. Willmott and B. T. Kulakowski, Numerical accele- 
ration of thermal regenerator simulations, Int. J. Num. 
Methods Eng. 11, 533-551 (1977). 
A. J. Willmott and R. J. Thomas, Analysis of the long 
contra-flow regenerative heat exchanger, J. Inst. Maths 
Applies. 14, 267-280 (1974). 
H. Hausen, Berechnumg von Regeneratoren nach der 
GauDschen Intergrationsmethode, ht. J. Heat Mass 
Transfer 17, 1111-1113 (1974). 
H. Hausen, Wlrmeiibertragung im Gegenstrom, Gleich- 
Strom und Kreuzstrom, 2nd edition,-Springer-Verlag, 
Berlin (1976). 

METHODES AFFINES POUR LES PROBLEMES DES REGENERATEURS 
THERMIQUES A CONTRE-COURANT 

R&sum&Des chercheurs ont prCsent6 des solutions analytiques du probldme du rtgCntrateur thermique $ 
contre-courant. Ces mithods de calcul n’ont pas it& prouvtes aussi robustes qu’on le souhaitait $ leur mise en 
place. Dans cet article, on d&rit des amknagements od quelques unes de ces difficultis peuvent etre rtduites. 
Les propositions permettent le dCveloppement de mCthodes adapt& aux mod&es non lin6aires des 

rkggdn8rateurs. 

VERFEINERTE GESCHLOSSENE L&UNGSMETHODEN FOR DAS 
PROBLEM DES GEGENSTROM-REGENERATORS 

Zusammenfassung-Friihere Autoren haben fiir das Problem des Gegenstrom-Regenerators teilanalytische 
Liisungen in geschlossener Form vorgelegt. Es hat sich herausgestellt, da13 diese Berechnungsmethoden nicht 
so unempfindlich sind, wie vielleicht angenommen wurde, als man die Verfahren erstmals angewandt hat. In 
dieser Arbeit werden Vorschlffge beschrieben, durch die einige dieser Schwierigkeiten umgangen werden 
kiinnen. Die Vorschliige beziehen sich auf eine miigliche Weiterentwicklung der geschlossenen Verfahren fiir 

realistische nicht-lineare Regenerator-Modelle. 
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YCOBEPUIEHCTBOBAHME TOqHbIX METOAOB PACqETA PEI-EHEPATMBHOI-0 
nPOTMBOT09HOl-0 TEllJlOO6MEHHWKA 

AmioTaqnn Pawee k~eKoTopbn4H wxe;~o*a remhm 6bI+ws ~~pemoxetsb~ ~owble nonyatmntwiecKtie 
pe~~mmn 3a,wr nponikxoro~a R pereHepammtoh4 TennooGh4emaKe. OmaKo 3m MeTonbl oKa3amicb 
He c~O;lb Ha,~emHbrMH, KaK Ilpei[llOflafaJ1OCb. B !rAtfHOfi pa6OTe OnHCaRbl CrlOCO6bI. IlOCpnCTBOM 

KOTOpb,X “eKOTOpb,e MI He,-,OCTaTKOB 17MX MeTO,!IOB MOQ’T 6bITb yCTpa”e”b,. 3TH IlpeiInOXEH~R 

,103BOJRIOT p;,?Brt, b rO’(Hb,e MeTOLlbI peLlIe,lltSl :L”R fIEaJ,bHbIX He.“riHetiHbIX MO,wneti pWeHe~TJ%BHbIX 


